Infant of a Diabetic Mother

DR.HIND MUTAR IBRAHIM T.U.C.O.M

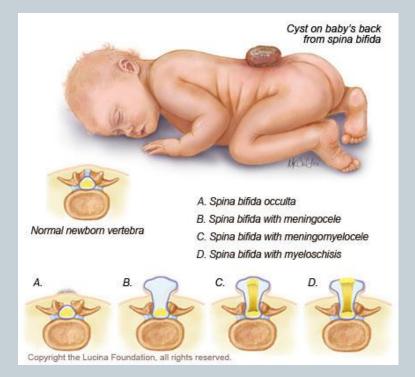
Introduction

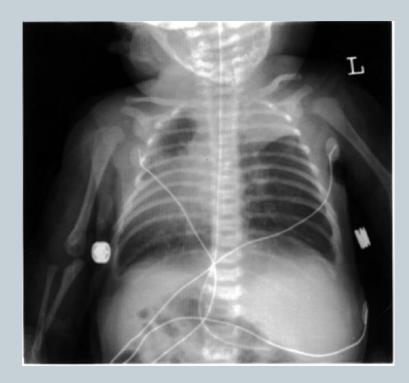
• Frequency: 3-10% of pregnant women have diabetes

o 88% have gestational diabetes

o 12% have known diabetes

×35% with Type I diabetes


×65% with Type II diabetes


Risk of Complications

- Depends on degree of glucose control
- Higher risk for complications to the fetus in moms with pre-gestational diabetes than with gestational diabetes
 - i.e. increased risk for congenital anomalies, future obesity, and diabetes
- Higher risk of complications during pregnancy when diabetic
 - i.e. preeclampsia 2x more common in diabetic pregnancies vs. normal pregnancies

Pathophysiology of Fetal Effects

Maternal hyperglycemia acts like a teratogen -> spontaneous abortions and malformations

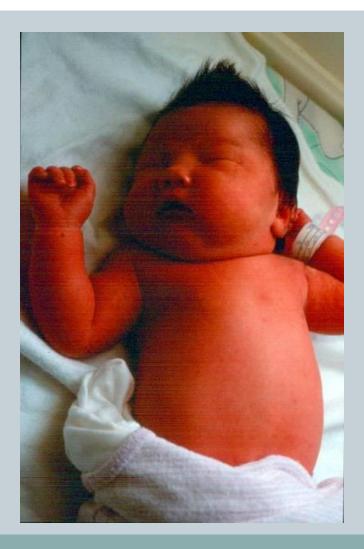
Situs Inversus

Pathophysiology of Fetal Effects

- Intermittent maternal hyperglycemia causes fetal hyperglycemia -> premature maturation of fetal pancreatic islet cells -> hyperinsulinemia in the fetus
- Increased insulin -> macrosomia -> increased metabolic rate -> increased O2 consumption -> relative hypoxia in the fetus ->
 - Stimulates erythropoietin -> polycythemia
 - May be contributing factor to 20-30% stillbirth rate in poorly controlled diabetics

Complications At Delivery

Premature delivery
Perinatal asphyxia
Birth injury


Neonatal Effects

Seen in 0.6% to 4% of diabetic pregnancies

• IUGR or macrosomia:

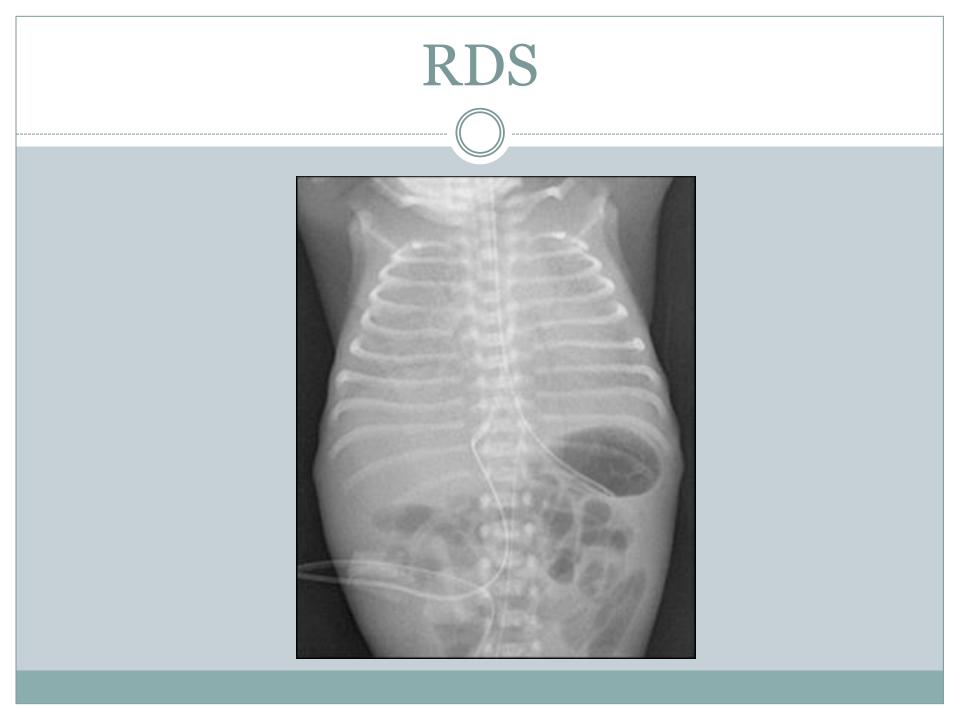
- Moms with poorly controlled diabetes and renal, cardiovascular, retinal disease are more likely to have a premature and/or IUGR baby
- Macrosomia is due to the direct effects of hyperinsulinemia
 - * Babies are >90th% in weight or >4000g, with excess fat accumulation in abdominal and scapular regions, along with visceromegaly.

LGA and SGA babies

• Hypoglycemia: glucose <40 mg/dl 0 27% of IDMs have hypoglycemia • Usually occurs in first few hours of life • Secondary to persistent hyperinsulinemia while transplacental glucose supply has stopped • S/S: lethargy, hypotonia, tremors, seizures, diaphoresis

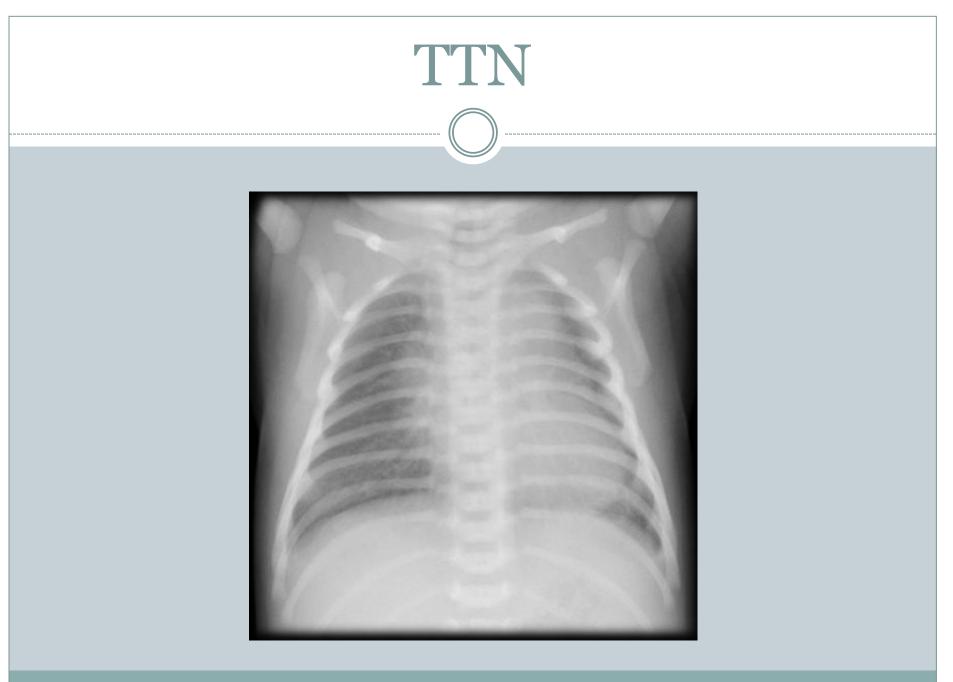
• Hypocalcemia: Ca <7 mg/dl

o Usually occurs in first 24-72 hours of life


• Thought to be due to low PTH in infant, which may be related to high maternal Ca during pregnancy

 S/S: asymptomatic with self resolution or jitteriness, tachypnea, seizures/tetany, lethargy, apnea

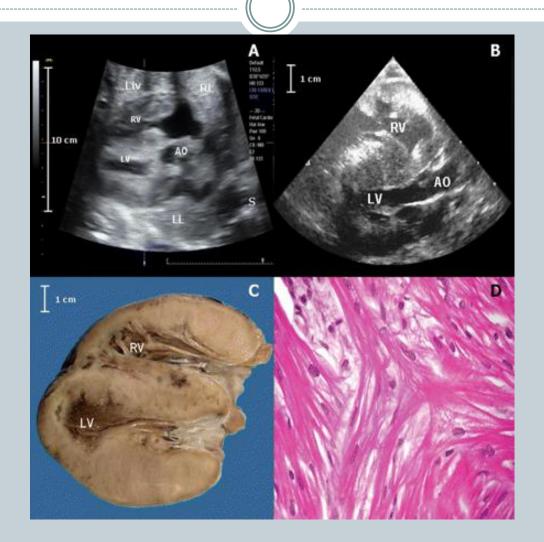
- Hypomagnesemia: Mg <1.5 mg/dl
 - o Occurs in 40% of IDMs
 - Thought to be from increased renal losses in diabetic mom
 - Usually transient and asymptomatic
 - May need to treat if also hypocalcemic


Respiratory

- Respiratory Distress Syndrome (RDS)
 - Occurs more frequently in IDMs
 - Hyperinsulinemia causes delayed maturation of surfactant synthesis
 - Diabetic moms are more likely to go into premature labor and delivery, which puts infants at an even greater risk of having immature lungs at birth

Respiratory

- Transient Tachypnea of the Newborn (TTN)
 - Occurs more frequently in IDMs because of risk factors associated with having diabetes:
 - PrematurityMacrosomiaBirth asphyxiaPolycythemiaIncreased likelihood of c-section
 - Caused by delayed resorption of fetal lung fluid, mild pulmonary immaturity, and mild surfactant deficiency
 - o Usually resolves by 72 hours of life

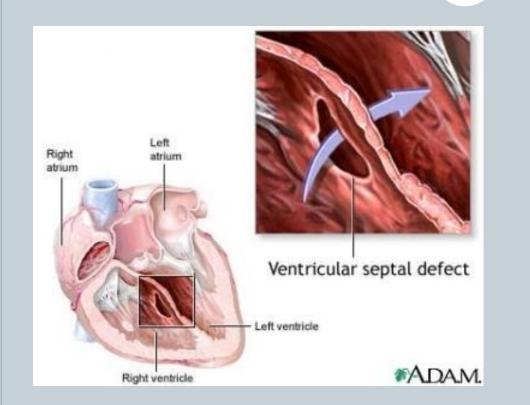


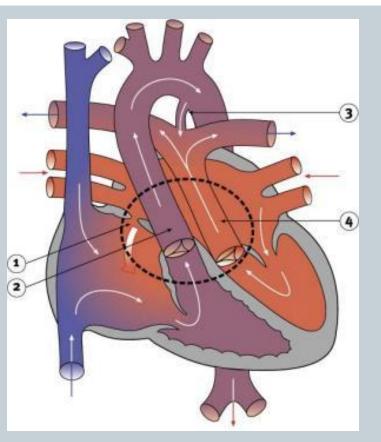
Cardiac

Hypertrophic cardiomyopathy

- Most infants are asymptomatic, but 5-10% have respiratory distress, other signs of poor cardiac output, or heart failure
- o Usually resolves by 6 months of age
- Thought to be caused by hyperinsulinemia, which increases fat and glycogen deposition into myocardial cells, causes thickening of interventricular septum &/or ventricular walls

Hypertrophic Cardiomyopathy



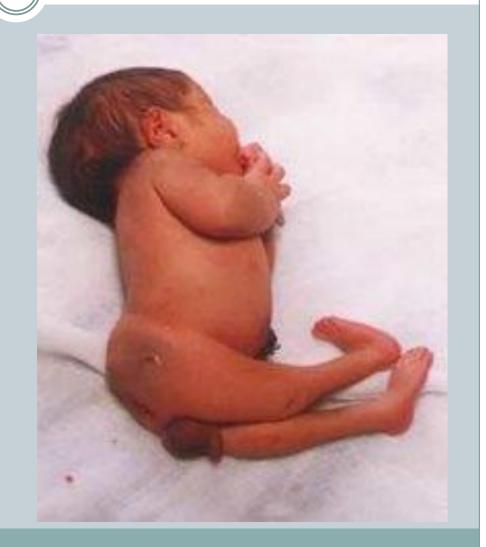

Cardiac

Cardiac Anomalies

- Poor diabetic control in the 1st trimester is associated with an increased risk of congenital malformations
- 2/3 of congenital anomalies are cardiovascular or CNS related.
- Common cardiac anomalies: Transposition of the great arteries, ASD, VSD, aortic coarctation

Cardiac Anomalies

Transposition of the great arteries

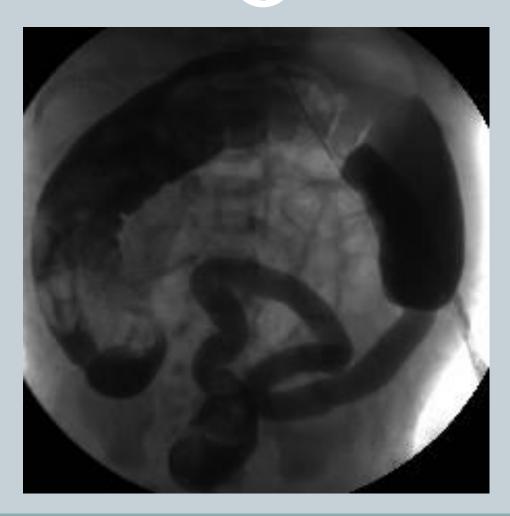

Neurologic

CNS anomalies

- Anencephaly and spina bifida occur 12-20x more frequently in IDMs
- Caudal Regression Syndrome: incomplete development of the lumbar and sacral vertebrae
 - × occurs 200x more frequently in IDMs
 - × spectrum of structural defects possible
 - associated with neurologic impairment due to involvement of distal spine (i.e. incontinence, decreased growth and movement of legs)

Anencephaly and Caudal Regression Syndrome

GI and GU


• GI anomalies

 Situs inversus, atresias, small left colon syndrome: presents like Hirschsprung disease, but innervation of the bowel is normal, inability to pass meconium resolves spontaneously

• GU anomalies

• Renal agenesis and other urinary tract abnormalities

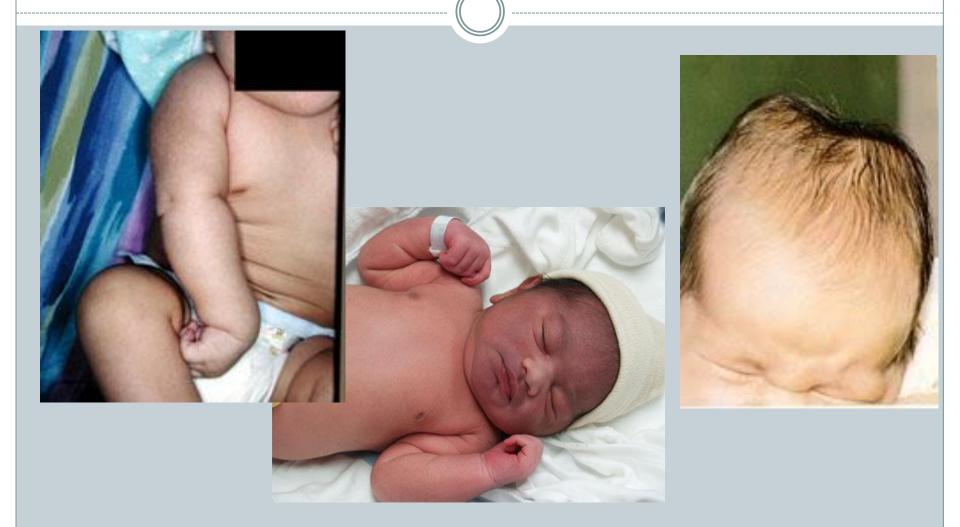
Small Left Colon Syndrome

Hematologic

Polycythemia

- Intervention required when central hematocrit > 65 with symptoms or >70 when asymptomatic
 Occurs in 13-33% of IDMs
- Related to hypoxia in utero -> stimulates
 erythropoietin, which increases RBC production
- Hyperviscosity in vasculature can cause sludging, ischemia, and infarction of internal organs

Hematologic


• Hyperbilirubinemia

- Occurs in 11-29% of IDMs
- Risk factors include:
 - × Prematurity
 - × Birth injury resulting in bruising or cephalohematoma
 - × Polycythemia causing increased hemolysis and release of bilirubin

Birth Injury

- Macrosomia puts infant at risk for injuries during delivery
 - Shoulder dystocia can lead to:
 - × Clavicular and/or humeral fractures
 - × Brachial plexus injuries
 - Traumatic delivery or need for vacuum/forceps assistance can lead to:
 - × Cephalohematomas
 - × Facial bruising
 - × Facial nerve injuries

Birth Injuries

Work-Up and Management

- Follow blood sugars
- If SGA or LGA, also check hematocrit
- Further work-up and management depends on patient's clinical presentation and physical exam
 - Hypoglycemia early feeding or IVFs with dextrose
 - Symptomatic electrolyte abnormalities replete electrolytes
 - Respiratory distress Cardiopulmonary support, CXR/echo to search for cause
 - Hyperbilirubinemia phototherapy
 - Polycythemia IVF hydration or exchange transfusion
 - Neuro/GI/GU anomalies imaging studies, specialist consult

Treament of neonatal hypoglycemia

- Start oral or gavage feeding as soon as possible(1-3hr of age)
- If neonate can not tolerate oral feeding, or if asymptomatic transient neonatal hyopoglycemia, give IV glucose infusion (4-8 mg/kg/min)
- In symptomatic hypoglycemia (other than seizures) give IV bolus of 200mg/kg of 10% glucose (2ml/kg),if seizure present give (4ml/kg)
- After initial therapy,give glucose infusion 8mg/kg/min

- If hypoglycemia recures , infusion rate increase until 15-20% glucose is used.
- If this are inadequate to eliminate symptoms ,hyperinsulinemia is probably present , using of steroid, diazoxide ,octeriotide may be useful
- Subtotal pancreatectomy may be needed in persistent hyperinsulinemia
- Follow up every 2 h after initiating therapy ,subsequently every 4-6 h
- Rx gradually reduced and discontinued when glucose level normal and infant asymptomatic for 24-48 h.

Prognosis

- Morbidity and mortality lessen with adequate diabetes control during pregnancy
- If diabetes is poorly controlled, there is a higher risk of neurodevelopmental deficits
- The risk of CP and epilepsy is increased
- The risk of childhood obesity, diabetes, and metabolic syndrome is increased